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Abstract-- Crackles are discontinuous adventitious respiratory
sounds, which are considered as signs of various pulmonary
disorders, therefore their detection is important in the analysis of
lung sounds. In this work, an instrument for separating crackles
from stationary lung sounds and quantifying their characteristics
is realized with DSP. The detection algorithm is based on
increasing transient to background ratio by adaptive filtering and
implementing nonlinear operators to wavelet based decomposed
lung sounds.
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. INTRODUCTION

Stethoscope is a widely used tool for the diagnosis of
various disorders in the lungs but is regarded as having low
diagnostic value since the interpretation of lung sounds
depends strongly on the experience of the physician and
therefore tends to be subjective [1]. Application of signal
processing techniques to the data obtained through the
stethoscope makes the interpretation of lung sounds more
objective and the simple and non-invasive auscultation method
more valuable in the diagnosis of pulmonary diseases. In
recent years, various studies have been conducted to obtain
parametric representations of lung sounds to establish a more
objective basis for their evaluation [1].

Pulmonary sounds which are roughly classified into breath
sounds and adventitious sounds are heard on the chest wall and
mouth. Breath sounds which are regarded as normal
respiratory noises are synchronous with the flow of air
changing from laminar to turbulent through the airways with a
frequency spectrum of 200-600 Hz in healthy lungs. Crackles
with a duration of less than 70 ms and a frequency spectrum of
100 to 2000 Hz constitute a significant component of
adventitious sounds. They are often attributed to the bubbling
of secretions in the airways or to the explosive change in gas
pressure in small airways. Crackles are basically classified as
fine and coarse. Timing (inspiratory, expiratory; early and
late), pitch (high or low) and number of crackles (scanty and
profuse) in pulmonary sounds reflect to type and stage of
disease [1]. For example, in patients with chronic air flow
obstruction and bronchiectasis, low pitched crackles, known as
coarse crackles, are produced whereas crackles of interstitial
fibrosis are high pitched or fine and occur in mid to late
inspiration. The waveform of a typical crackle may be seen in
Fig. 1.

In spite of their diagnostic value in the evaluation of
pulmonary sounds, crackles, due to their short duration, are
difficult to detect since the human ear is unable to distinguish
events occurring in milliseconds. Moreover, crackles, being

localized in time, are not significantly represented in the total
spectrum of pulmonary sounds. In this study, a DSP based
instrument is implemented for the on-line detection of crackles
in pulmonary sounds. The algorithm implemented in the DSP
is based on a method developed earlier in our laboratory for
the detection of transients in biomedical signals [2]. The
detected crackles are further processed for the display of
crackles, the phase of occurrence of crackles within the
respiration cycle and crackle parameters. Timing of crackles
within a respiratory cycle is made possible by the simultaneous
recording of air flow with pulmonary sounds. This instrument
is aimed to help the physician to extract and record crackles
which are difficult to detect through the stethoscope due to
their short duration but whose presence is significant in the
diagnosis of different lung disorders.
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Fig.1 A typical crackle waveform
1. METHODOLOGY

Lung sounds are recorded via an electret air-coupled
microphone transducer placed on the posterior basilar of the
chest, are processed with a low-noise preamplifier and a
bandpass filter with 60 dB gain and a flat frequency response
at 80-2000 Hz [3], and are digitized at 4 kHz, using a 24-bit
analog-to-digital converter. The lower cut-off frequency is set
at 80 Hz to filter out heart sounds and frictional noise. The
flow signal is also recorded by a Fleisch-type flowmeter in
order to synchronize on the inspiration-expiration phases and
is amplified with a preamplifier with a 40dB gain and a
bandwidth between 1.4 Hz to 30 Hz. These signals are scaled
to 0-5V voltage range for the input of A/D converter. Motorola
DSP56002EVVM module is used for digital signal processing.
There is a discrete 24-bit codec (A/D and D/A converter) on
the module, which is communicating with the DSP via
Synchronous Serial Interface (SSI). After transmitting
digitized lung sounds and flow signal serially to a digital signal
processor (Motorola, DSP56002), a transient detection
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algorithm is applied for separating crackles from stationary
lung sounds. The block diagram of the instrument is depicted
in Fig. 2.
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Fig. 2. Block diagram of the instrument.

In the separation algorithm, a prediction error filter (PEF) is
first applied to digitized signals for decorrelating the
background. This filter is a FIR filter that has adaptively
changing coefficients with time as a function of filter inputs
(LMS algorithm) [2], [4]. The error signal is next expanded in
time scale space, using discrete wavelet transform (DWT).
This step is useful for applying non-linear operators to the
error signal in different frequency bands [2]. The third step is
the application of an inverse discrete wavelet (IDWT)
transform to these expanded signals in order to reconstruct the
crackles. After the IDWT, an all pole IIR filter, whose
parameters are equal to the PEF parameters, is applied for
synthesizing the original waveforms of crackles [2]. Finally
these crackles are detected by implementing a thresholding and
displayed on a PC monitor together with the flow signal. Also
displayed on the monitor are the crackle parameters of the
detected crackles and their corresponding phases within the
respiratory cycle. Fig. 3 shows the block diagram of the
detection algorithm implemented with the DSP.
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Fig. 3. Block diagram of the implemented algorithm.

Crackle detection algorithm in Fig. 3 was written in DSP
assembler and crackles were transferred to a PC via Serial
Communication Interface (SCI). DSP56002 is 24-bit floating
point DSP, operating up to 40 million instructions per second
at 80M Hz, with a single-cycle 24 x 24 bit parallel multiply-
accumulator. Each on-chip execution unit (address generation
unit, program control unit, two arithmetic logic units), memory
and peripheral units operates independently and in parallel
with other units through a sophisticated bus system. Due to
this parallel operation, an instruction prefetch, a 24 x 24 bit
multiplication, a 56 bit addition, two data moves, and two
address pointer updates can be executed in a single instruction

cycle. This parallelism allows a four coefficient IIR filter to be
executed in only four cycles, the theoretical minimum for
single multiplier architecture. At the same time, two serial
controllers (SCI and SSI) can send and receive full-duplex
data, and a host port can send/receive simplex data. Signal at
the output of each block in Fig. 3 was converted to analog
using the codec and observed via oscilloscope during the
design.

The PEF algorithm supposes that the lung sound (x, ) is a
summation of two types of signals: the stationary signal, which
can be expressed by an AR model and the nonstationary
signal, composed of crackles [2], [4]. A stationary signal or
function is deterministic, allowing us to predict its condition at
any point in time. From this point of view, if we predict the
lung sounds (y,) with an AR model and if we subtract the
predicted signal from the real signal, we find an error (e,),
which mainly consists of the crackles. Equations (1) through
(4) show PEF calculations. ¢, and c, are adaptively changing
coefficients of two-tap FIR filter. And u is the adaptation gain

constant, which is very close to 1.
2

yn = ch'xn—k (1)
Yo =Ci Xy +Cy X 2
e, =Yy, =X, @)
C, =C,, +UX,_,€ (4)

The error signal at the output of PEF mainly consists of
nonstationary components in the lung sounds as well as some
stationary components, which could not be suppressed due to
adaptation errors. Fig. 4 and Fig. 5 show the error signal at the
output of PEF, e(n), for two different inputs: a sinusoidal
signal with some nonstationary components and a lung sound
signal, respectively. Decrease in stationary to nonstationary
ratio (SNR) can be seen easily from these figures.
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Fig. 4 The output of PEF applied to 200 Hz sinusoidal signal with
nonstationary components.
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Fig. 5 The output of PEF applied to a lung sound signal.
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The error signal at the output of PEF, e, , is extended in
time-frequency space between 0 — 2500 Hz frequency bands,
using DWT. Output of DWT consists of six signals
corresponding to six different frequency bands, so that the
error signal can be analyzed in six different bands. Extending
the error signal in different frequency bands is useful for
applying nonlinear operators to each band separately. E, and
Es reflect to lowest and highest frequency bands, respectively.
DWT is implemented using FIR filters and down-samplers as
shown in Fig. 6. Length-six Daubechies filters are selected as
FIR filters, due to the strict matching requirement of filter
response and crackle characteristics.
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Fig. 6. Discrete Wavelet Transform.

Nonlinear Teager and threshold operators are applied to
each band for decreasing SNR. Teager function can be defined
as in equation (5). Applying the Teager operator, nonstationary
components are amplified while stationary ones are attenuated.
After the Teager operator, a threshold operator is applied for
zeroing the background. Level of threshold, T, is chosen as the
average of last six samples in each band.

E'w = E()’-E(n-1).E(+1) (5)
E’(n) , E’(n)>T(n)

E”(n)={ (6)
0 , E’(n)<T(n)
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Fig. 7. Nonlinear operators.

After increasing SNR with nonlinear operators, IDWT is
applied to construct the error signal back. Implementation of
IDWT with FIR filters and up-samplers is shown in Fig. 8. For
the protection of symmetry, Daubechies filters are selected as
FIR filters again.
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Fig. 8. Inverse Discrete Wavelet Transform.

Fig. 9 shows the signal at the output of IDWT, e’(n), for a
lung sound input.
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Fig. 9. Crackles at the output of IDWT.



Calculated error signal, e’(n), is passed through an all pole
IIR filter, which has the same coefficients with PEF for
resembling the crackles to their original shapes maximally.
Maintaining the original waveforms of the detected crackles is
significant due to the fact that carackle parameters such as the
initial deflection width (IDW) and the two-cycle duration
(2CD), which depend strongly on the crackle waveform, are
calculated and presented as the final step of the detection
algorithm. A final thresholding is applied to new error signal,
e’’(n), for zeroing the background. Thresholding is applied
according to the change of amplitudes between consecutive
samples. T reflects to thresholding level in (8).

e’(m), e’(n)-e’(n-1)>T
output(n) = (8)
0 , e’(n)-e’(n-1)<T

Fig. 10 shows the detected crackles at the final output for a
sample of recorded lung sound.
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Fig. 10. Detected crackles of a lung sound signal sample at the final output.
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The detected crackles are further processed for calculation
of crackle parameters. The two commonly accepted parameters
which characterize and quantify the morphology of crackles
are initial deflection width (IDW) and two-cycle duration
(2CD). IDW is the duration of the first deflection point of the
crackle whereas 2CD is the duration of the first two cycles of
the crackle. Crackles with lower duration parameters are
classified as fine and those with larger duration parameters as
coarse. A third parameter of detected crackle is the phase of
occurrence within the respiratory cycle which is divided into
six phases, namely as early, mid, late inspiration/expiration.

I1l.  CONCLUSION

We have built a DSP based instrument for the detection
and quantification of cracles in pulmonary sounds. The
detection algorithm, which was earlier developed in our
laboratory, uses a wavelet approach to separate nonstationary
part of the signal. The detected crackles are restored to their
original wave shapes for further analysis of their morphology.
IDW and 2CD are two parameters which help to classify
crackles as fine and coarse. A third parameter of importance in
the diagnosis of pulmonary disorders is the time of occurrence
of crackles within the respiratory cycle. Crackles along with
their parameters are displayed on a PC monitor.

This instrument can be used as an on-line crackle detector
to aid the physician to recognize transients of milliseconds
duration. Moreover, this instrument may also form part of an
expert system designed to diagnose lung disorders based on
pulmonary sounds.
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